资源类型

期刊论文 88

会议视频 2

年份

2023 6

2022 8

2021 12

2020 7

2019 8

2018 4

2017 7

2016 8

2015 3

2014 2

2013 4

2012 4

2011 2

2010 2

2009 3

2008 1

2007 1

2006 3

2002 1

1999 1

展开 ︾

关键词

水泥 2

耐久性 2

高性能混凝土 2

人体测量 1

全膝关节置换 1

冷却 1

分析滤波器;线性预测;窄带语音水印;通带激励替代;能量规范化;谱包络成形;合成滤波器 1

分类 1

劣化机理 1

可持续性 1

后压浆 1

哈龙 1

哈龙替代 1

回弹性 1

围岩增耦 1

地聚合物 1

基于族群的设计 1

基础设施 1

增材制造 1

展开 ︾

检索范围:

排序: 展示方式:

Long term performance of recycled concrete beams with different water–cement ratio and recycled aggregatereplacement rate

Jingwei YING; Feiming SU; Shuangren CHEN

《结构与土木工程前沿(英文)》 2022年 第16卷 第3期   页码 302-315 doi: 10.1007/s11709-022-0803-7

摘要: The purpose of this study is to reveal the service performance of recycled aggregate concrete (RAC) components for different values of water−cement ratio and replacement rate of recycled coarse aggregate (RCA). Generally, the concrete strength decreases with the increase of the replacement rate of RCA, in order to meet the strength requirements when changing the replacement rate of RCA, it is necessary to change the water−cement ratio at the same time. Therefore, the axial compressive strengths of prism with 25 mix proportions, the short-term mechanical properties and long-term deformation properties of reinforced concrete beams were tested respectively by changing water−cement ratio and RCA replacement rate. The bearing capacity and the strain nephogram of samples under different loads were obtained using the Digital Image Correlation (DIC) method, and a self-made gravity loading experimental device was used for long-term deformation investigation. Results showed that the damage pattern of RAC was the same as that of natural aggregate concrete (NAC), but the brittleness was more pronounced. The brittleness of concrete before failure can be reduced more effectively by adjusting the replacement rate of RCA than by adjusting the water−cement ratio. The water−cement ratio has an evident influence on the axial compressive strength and early creep of concrete, while the replacement rate of RCA has a remarkable effect on the long-term deformation of the concrete beams.

关键词: recycled concrete     beam     the replacement rate of recycled coarse aggregate     water–cement ratio     digital image correlation    

Utilization of MSWI fly ash as partial cement or sand substitute with focus on cementing efficiency and

Lei Zheng, Xingbao Gao, Wei Wang, Zifu Li, Lingling Zhang, Shikun Cheng

《环境科学与工程前沿(英文)》 2020年 第14卷 第1期 doi: 10.1007/s11783-019-1184-6

摘要: Washed MSWI fly ash was used as partial cement or sand substitute. Sand replacing is beneficial for strength, while cement replacement reduces strength. Cementing efficiency factor and mortar pore structure explain the strength results. Health risk assessment was conducted for MSWI fly ash blended cement mortar. CR and HI contributed by different exposures and heavy metals were analyzed. The strength of cement substituted mortar decreases with the increase in fly ash amount, whereas the strength increases when the fly ash is blended as sand substitute. A mortar with highest strength (compressive strength= 30.2 Mpa; flexural strength= 7.0 Mpa) was obtained when the sand replacement ratio was 0.75%. The k value (cementing efficiency) of fly ash varied between 0.36 and 0.15 for the fly ash fraction in binder between 5% and 25%. The k values of fly ash used for sand replacement were all significantly above that used for cement substitution. The macropores assigned to the gaps between particles decreased when the fly ash was used as sand replacement, providing an explanation for the strength enhancement. The waste-extraction procedure (toxicity-sulphuric acid and nitric acid method (HJ/T 299-2007)) was used to evaluate metal leaching, indicating the reuse possibility of fly ash blended mortar. For the mortar with the mass ratio of fly ash to binder of 0.5%, the carcinogenic risks (CR) and non-carcinogenic hazard quotient (HQ) in sensitive scenario for blended mortar utilization were 9.66 × 10-7 and 0.06, respectively; these results were both lower than the threshold values, showing an acceptable health risk. The CR (9.89 × 10-5) and HQ (3.89) of the non-sensitive scenario for fly ash treatment exceeded the acceptable threshold values, indicating health risks to onsite workers. The main contributor to the carcinogenic and non-carcinogenic risk is Cr and Cd, respectively. The CR and HQ from inhalation was the main route of heavy metal exposure.

关键词: MSWI fly ash     Cementing efficiency     Health risk assessment of heavy metal     Sand replacement     Cement replacement    

Effect of fineness of ash on pozzolanic properties and acid resistance of sugarcane bagasse ash replaced cement

Shan E ALI; Rizwan AZAM; Muhammad Rizwan RIAZ; Mohamed ZAWAM

《结构与土木工程前沿(英文)》 2022年 第16卷 第10期   页码 1287-1300 doi: 10.1007/s11709-022-0872-7

摘要: This paper addresses the potential use of Sugar Cane Bagasse Ash (SCBA) as a pozzolanic material for partial cement replacement in concrete mixtures. Cement mortars containing SCBA having five different particle size distributions at a replacement rate of 20% by weight were used to study the chemical and physical pozzolanic properties of SCBA. The durability of SCBA replaced mortars was also evaluated. SCBA with 0% retained on sieve No. 325 was used to replace 20% by weight of cement and create mortar specimens that were subjected to sulfuric acid attack of varying concentrations (1%−3% by weight of water). The tested samples were observed to check visual distortion, mass loss, and compressive strength loss at 1, 7, 14, 28, and 56 d of acidic exposure, and the results were compared to those for the control sample, that was lime water cured, at the same ages. The SCBA sets were found to meet the requirements for pozzolan class N specified by ASTM C 618. Mortars containing SCBA with 0% or 15% retention produced better compressive strength than the control mortars after 28 d. Additionally, X-ray fluorescence and X-ray diffraction analysis showed that the SCBA had favorable chemical properties for a pozzolanic material. Furthermore, SCBA replaced samples at all ages showed improved resistance against acidic attack relative to that of the control mortars. Maximum deterioration was seen for 3% concentrated solution. This study’s findings demonstrated that SCBA with an appropriate fineness could be used as a pozzolanic material, consistently with ASTM C 618.

关键词: durability     cement replacement     sugarcane bagasse ash     fineness of ash     pozzolanic properties     mortar acid resistance    

Effects of seeding nucleation agent on geopolymerization process of fly-ash geopolymer

Lapyote PRASITTISOPIN, Issara SEREEWATTHANAWUT

《结构与土木工程前沿(英文)》 2018年 第12卷 第1期   页码 16-25 doi: 10.1007/s11709-016-0373-7

摘要: Geopolymer, an inorganic aluminosilicate material activated by alkaline medium solution, can perform as an inorganic adhesive. The geopolymer technology has a viability to substitute traditional concrete made of portland cement (PC) because replacing PC with fly ash leads to reduced carbon dioxide emissions from cement productions and reduced materials cost. Although fly ash geopolymer stimulates sustainability, it is slow geopolymerization reaction poses a challenge for construction technology in term of practicality. The development of increasing geopolymerization reaction rate of the geopolymer is needed. ?The purpose of this study is to evaluate seeding nucleation agents (NA) of fly ash geopolymer that can accelerate polymerization reactions such that the geopolymer can be widely used in the construction industry. Results from the present study indicate that the use of NA (i.e., Ca(OH) ) can be potentially used to increase geopolymerization reaction rate and improve performance characteristics of the fly ash geopolymer product.

关键词: fly ash     geopolymer     nucleation agent     portland cement replacement    

Extending blending proportions of ordinary Portland cement and calcium sulfoaluminate cement blends:

《结构与土木工程前沿(英文)》 2021年 第15卷 第5期   页码 1249-1260 doi: 10.1007/s11709-021-0770-4

摘要: This study extended blending proportion range of ordinary Portland cement (OPC) and calcium sulfoaluminate (CSA) cement blends, and investigated effects of proportions on setting time, workability, and strength development of OPC-CSA blend-based mixtures. Thermogravimetric analysis (TGA) and X-ray diffraction (XRD) were conducted to help understand the performance of OPC-CSA blend-based mixtures. The setting time of the OPC-CSA blends was extended, and the workability was improved with increase of OPC content. Although the early-age strength decreased with increase of OPC content, the strength development was still very fast when the OPC content was lower than 60% due to the rapid formation and accumulation of ettringite. At 2 h, the OPC-CSA blend-based mortars with OPC contents of 0%, 20%, 40%, and 60% achieved the unconfined compressive strength (UCS) of 17.5, 13.9, 9.6, and 5.0 MPa, respectively. The OPC content had a negligible influence on long-term strength. At 90 d, the average UCS of the OPC-CSA blend-based mortars was 39.2 ± 1.7 MPa.

关键词: calcium sulfoaluminate cement     cement blends     hydration reaction     setting     workability     compressive strength    

ITZ microstructure, thickness, porosity and its relation with compressive and flexural strength of cementmortar; influence of cement fineness and water/cement ratio

《结构与土木工程前沿(英文)》 2022年 第16卷 第2期   页码 191-201 doi: 10.1007/s11709-021-0792-y

摘要: A new insight into the interfacial transition zone (ITZ) in cement mortar specimens (CMSs) that is influenced by cement fineness is reported. The importance of cement fineness in ITZ characterizations such as morphology and thickness is elucidated by backscattered electron images and by consequences to the compressive (Fc) and flexural strength (Ff), and porosity at various water/cement ratios. The findings indicate that by increasing the cement fineness the calcium silicate hydrate formation in the ITZ is favored and that this can refine the pore structures and create a denser and more homogeneous microstructure. By increasing cement fineness by about 25% of, the ITZ thickness of CMSs was reduced by about 30% and Fc was increased by 7%–52% and Ff by 19%–40%. These findings illustrate that the influence of ITZ features on the mechanical strength of CMSs is mostly related to the cement fineness and ITZ microstructure.

关键词: cement fineness     interfacial transition zone     compressive and flexural strength    

Study of bond strength between various grade of Ordinary Portland Cement (OPC) and Portland PozzolaneCement (PPC) mixes and different diameter of TMT bars by using pullout test

A D POFALE, S P WANJARI

《结构与土木工程前沿(英文)》 2013年 第7卷 第1期   页码 39-45 doi: 10.1007/s11709-013-0193-y

摘要: Since last two decades, the Portland Pozzolane Cement (PPC) is extensively used in structural concrete. But, till to date, a few literature is available on bond strength of concrete using PPC mixes. There are many literatures available on bond strength of concrete mixes using Ordinary Portland Cement (OPC). Hence, a comparative study was conducted on bond strength between OPC and PPC mixes. In the present investigation, total 24 samples consisting of M20, M35 and M50 grades of concrete and 16 and 25 mm diameter of TMT bar were tested for 7 and 28 days. The pullout bond test was conducted on each specimen as per IS: 2770-1967/1997 [1] and the results were observed at 0.25 mm slip at loaded end called as critical bond stress and at maximum bond load called as maximum bond stress. It was observed that the critical bond strength of PPC mixes is 10% higher than OPC mixes. Whereas, marginal improvement was noticed in maximum bond strength of PPC mixes. Hence, based on these findings, it could be concluded that development length for PPC mixes could be reduced by 10% as compared with same grade of OPC mixes.

关键词: bond strength     Portland Pozzolane Cement (PPC) concrete     Ordinary Portland Cement (OPC) concrete     bond between concrete and steel     pullout test     development length    

Effect of fly ash replacement level on the fracture behavior of concrete

Mahdi AREZOUMANDI, Jeffery S. VOLZ

《结构与土木工程前沿(英文)》 2013年 第7卷 第4期   页码 411-418 doi: 10.1007/s11709-013-0228-4

摘要: The production of portland cement–the key ingredient in concrete–generates a significant amount of carbon dioxide. However, due to its incredible versatility, availability, and relatively low cost, concrete is the most consumed manmade material on the planet. One method of reducing concrete’s contribution to greenhouse gas emissions is the use of fly ash to replace a significant amount of the cement. ?This study presents the results of an experimental investigation that evaluates effect of fly ash replacement level on the fracture energy of concrete. This study includes four mixes with 0%, 30%, 50%, and 70% fly ash as a cement replacement. This experimental program consisted of 32 fracture beams to study the fracture behavior of concrete. The experimental fracture energies were compared with the fracture energy provisions of different design codes and also different analytical equations. Furthermore, statistical data analyses (parametric and non-parametric) were performed to evaluate whether or not there is any statistically significant difference between the experimental fracture energies of different mixes. Results of these statistical tests show that the mix with higher level of fly ash replacement level has higher fracture energy.

关键词: concrete     fracture energy     fly ash    

Endosulfan residues and farmers’ replacement behaviors of endosulfan in the north-west inland cotton

《环境科学与工程前沿(英文)》 2023年 第18卷 第4期 doi: 10.1007/s11783-024-1803-8

摘要:

● The situation of endosulfan residues in cotton fields were assessed.

关键词: Cotton fields     Endosulfan residues     Farmers     KAP survey     Replacement behaviours    

Autogenous healing mechanism of cement-based materials

《结构与土木工程前沿(英文)》   页码 948-963 doi: 10.1007/s11709-023-0960-3

摘要: Autogenous self-healing is the innate and fundamental repair capability of cement-based materials for healing cracks. Many researchers have investigated factors that influence autogenous healing. However, systematic research on the autogenous healing mechanism of cement-based materials is lacking. The healing process mainly involves a chemical process, including further hydration of unhydrated cement and carbonation of calcium oxide and calcium hydroxide. Hence, the autogenous healing process is influenced by the material constituents of the cement composite and the ambient environment. In this study, different factors influencing the healing process of cement-based materials were investigated. Scanning electron microscopy and optical microscopy were used to examine the autogenous healing mechanism, and the maximum healing capacity was assessed. Furthermore, detailed theoretical analysis and quantitative detection of autogenous healing were conducted. This study provides a valuable reference for developing an improved healing technique for cement-based composites.

关键词: autogenous healing     cement-based materials     healing mechanism     aggregation effect    

Research review of the cement sand and gravel (CSG) dam

Xin CAI, Yingli WU, Xingwen GUO, Yu MING

《结构与土木工程前沿(英文)》 2012年 第6卷 第1期   页码 19-24 doi: 10.1007/s11709-012-0145-y

摘要: The cement sand and gravel (CSG) dam is a new style of dam that owes the advantages both of the concrete faced rock-fill dam (CRFD) and roller compacted concrete (RCC) gravity dam, because of which it has attracted much attention of experts home and abroad. At present, some researches on physic-mechanical property of CSG material and work behavior of CSG dam have been done. This paper introduces the development and characteristics of CSG dam systematically, and summarizes the progress of the study on basic tests, constitutive relation of CSG material and numerical analysis of CSG dam, in addition, indicates research and application aspect of the dam.

关键词: cement sand and gravel (CSG) dam     cement sand and gravel (CSG) material     research review    

Experimental study and field application of calcium sulfoaluminate cement for rapid repair of concrete

Yanhua GUAN, Ying GAO, Renjuan SUN, Moon C. WON, Zhi GE

《结构与土木工程前沿(英文)》 2017年 第11卷 第3期   页码 338-345 doi: 10.1007/s11709-017-0411-0

摘要: The fast-track repair of deteriorated concrete pavement requires materials that can be placed, cured, and opened to the traffic in a short period. Type III cement and Calcium Sulfoaluminate (CSA) cement are the most commonly used fast-setting hydraulic cement (FSHC). In this study, the properties of Type III and CSA cement concrete, including compressive strength, coefficient of thermal expansion (CTE) and shrinkage were evaluated. The test results indicate that compressive strength of FSHC concrete increased rapidly at the early age. CSA cement concrete had higher early-age and long term strength. The shrinkage of CSA cement concrete was lower than that of Type III cement concrete. Both CSA and Type III cement concrete had similar CTE values. Based on the laboratory results, the CSA cement was selected as the partial-depth rapid repair material for a distressed continuously reinforced concrete pavement. The data collected during and after the repair show that the CSA cement concrete had good short-term and long-term performances and, therefore, was suitable for the rapid repair of concrete pavement.

关键词: Calcium Sulfoaluminate (CSA) cement     Type III cement     coefficient of thermal expansion (CTE)     shrinkage     rapid repair    

The evolution of surgical and medical treatment of aortic root aneurysm

null

《医学前沿(英文)》 2014年 第8卷 第4期   页码 427-432 doi: 10.1007/s11684-014-0385-4

摘要:

Since first report of aortic root replacement in 1968, the surgical risk and long term outcome of patients with aortic root aneurysm have been continuously improving. In the last 30 years, the surgical approach is also evolving towards more valve conservation with prophylactical intervention at an earlier clinical stage. Translational research has also led to emerging surgical innovation and new drug therapy. Their efficacies are currently under vigorous clinical trials and evaluations.

关键词: aortic root aneurysm     aortic root replacement     valve sparing root replacement     personalised external aortic root support    

Multiscale mechanical modeling of hydrated cement paste under tensile load using the combined DEM-MD

Yue HOU, Linbing WANG

《结构与土木工程前沿(英文)》 2017年 第11卷 第3期   页码 270-278 doi: 10.1007/s11709-017-0408-8

摘要: In this paper, a combined DEM-MD method is proposed to simulate the crack failure process of Hydrated Cement Paste (HCP) under a tensile force. A three-dimensional (3D) multiscale mechanical model is established using the combined Discrete Element Method (DEM)-Molecular Dynamics (MD) method in LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). In the 3D model, HCP consists of discrete particles and atoms. Simulation results show that the combined DEM-MD model is computationally efficient with good accuracy in predicting tensile failures of HCP.

关键词: hydrated cement paste     multiscale     MD simulation     DEM    

Mechanical properties and microstructure of multilayer graphene oxide cement mortar

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 1058-1070 doi: 10.1007/s11709-021-0747-3

摘要: This study reports on the effects of multilayer graphene oxide (MGO) on compressive strength, flexural strength, and microstructure of cement mortar. The cement mortar was prepared with type P. II. 52.5 Portland cement, standard sand, and MGO. Four mixes were prepared with inclusion of MGO (0%, 0.02%, 0.04%, and 0.06% by weight of cement). The testing result shows that the compressive of GO-cement mortar increased by 4.84%–13.42%, and the flexural strength increased by 4.37%–8.28% at 3 d. GO-cement mortar’s compressive strength and flexural strength at 7 d increased by 3.84%–12.08% and 2.54%–13.43%, respectively. MGO made little contribution to the increases of compressive strength and flexural strength of cement mortar at 28 d. The results of X-ray diffraction (XRD), scanning electron microscope (SEM), and nitrogen (N2) adsorption/desorption tests show that the types of hydration products and crystal grain size did not change after adding MGO. Still, it can help to improve the microstructure of the cement mortar via regulating hydration products and can provide more condensed cores to accelerate hydration. Furthermore, the regulating action of MGO for the microstructure of cement mortar at an early age was better than that at 28 d.

关键词: graphene oxide     cement     mortar     mechanical properties     microstructure    

标题 作者 时间 类型 操作

Long term performance of recycled concrete beams with different water–cement ratio and recycled aggregatereplacement rate

Jingwei YING; Feiming SU; Shuangren CHEN

期刊论文

Utilization of MSWI fly ash as partial cement or sand substitute with focus on cementing efficiency and

Lei Zheng, Xingbao Gao, Wei Wang, Zifu Li, Lingling Zhang, Shikun Cheng

期刊论文

Effect of fineness of ash on pozzolanic properties and acid resistance of sugarcane bagasse ash replaced cement

Shan E ALI; Rizwan AZAM; Muhammad Rizwan RIAZ; Mohamed ZAWAM

期刊论文

Effects of seeding nucleation agent on geopolymerization process of fly-ash geopolymer

Lapyote PRASITTISOPIN, Issara SEREEWATTHANAWUT

期刊论文

Extending blending proportions of ordinary Portland cement and calcium sulfoaluminate cement blends:

期刊论文

ITZ microstructure, thickness, porosity and its relation with compressive and flexural strength of cementmortar; influence of cement fineness and water/cement ratio

期刊论文

Study of bond strength between various grade of Ordinary Portland Cement (OPC) and Portland PozzolaneCement (PPC) mixes and different diameter of TMT bars by using pullout test

A D POFALE, S P WANJARI

期刊论文

Effect of fly ash replacement level on the fracture behavior of concrete

Mahdi AREZOUMANDI, Jeffery S. VOLZ

期刊论文

Endosulfan residues and farmers’ replacement behaviors of endosulfan in the north-west inland cotton

期刊论文

Autogenous healing mechanism of cement-based materials

期刊论文

Research review of the cement sand and gravel (CSG) dam

Xin CAI, Yingli WU, Xingwen GUO, Yu MING

期刊论文

Experimental study and field application of calcium sulfoaluminate cement for rapid repair of concrete

Yanhua GUAN, Ying GAO, Renjuan SUN, Moon C. WON, Zhi GE

期刊论文

The evolution of surgical and medical treatment of aortic root aneurysm

null

期刊论文

Multiscale mechanical modeling of hydrated cement paste under tensile load using the combined DEM-MD

Yue HOU, Linbing WANG

期刊论文

Mechanical properties and microstructure of multilayer graphene oxide cement mortar

期刊论文